342 research outputs found

    Long-Range Repulsion Between Spatially Confined van der Waals Dimers

    Get PDF
    It is an undisputed textbook fact that non-retarded van der Waals (vdW) interactions between isotropic dimers are attractive, regardless of the polarizability of the interacting systems or spatial dimensionality. The universality of vdW attraction is attributed to the dipolar coupling between fluctuating electron charge densities. Here we demonstrate that the long-range interaction between \textit{spatially confined} vdW dimers becomes repulsive when accounting for the full Coulomb interaction between charge fluctuations. Our analytic results are obtained by using the Coulomb potential as a perturbation over dipole-correlated states for two quantum harmonic oscillators embedded in spaces with reduced dimensionality, however the long-range repulsion is expected to be a general phenomenon for spatially-confined quantum systems. We suggest optical experiments to test our predictions, analyze their relevance in the context of intermolecular interactions in nanoscale environments, and rationalize the recent observation of anomalously strong screening of the lateral vdW interactions between aromatic hydrocarbons adsorbed on metal surfaces.Comment: 2 figure

    Quantum Tunneling of Thermal Protons Through Pristine Graphene

    Get PDF
    Atomically thin two-dimensional materials such as graphene and hexagonal boron nitride have recently been found to exhibit appreciable permeability to thermal protons, making these materials emerging candidates for separation technologies [S. Hu et al., Nature 516, 227 (2014); M. Lozada-Hidalgo et al., Science 351, 68 (2016).]. These remarkable findings remain unexplained by density-functional electronic structure calculations, which instead yield barriers that exceed by 1.0 eV those found in experiments. Here we resolve this puzzle by demonstrating that the proton transfer through pristine graphene is driven by quantum nuclear effects, which substantially reduce the transport barrier by up to 1.4 eV compared to the results of classical molecular dynamics (MD). Our Feynman-Kac path-integral MD simulations unambiguously reveal the quantum tunneling mechanism of strongly interacting hydrogen ions through two-dimensional materials. In addition, we predict a strong isotope effect of 1 eV on the transport barrier for graphene in vacuum and at room temperature. These findings not only shed light on the graphene permeability to protons and deuterons, but also offer new insights for controlling the underlying quantum ion transport mechanisms in nanostructured separation membranes

    Fluctuational Electrodynamics in Atomic and Macroscopic Systems: van der Waals Interactions and Radiative Heat Transfer

    Full text link
    We present an approach to describing fluctuational electrodynamic (FED) interactions, particularly van der Waals (vdW) interactions as well as radiative heat transfer (RHT), between material bodies of vastly different length scales, allowing for going between atomistic and continuum treatments of the response of each of these bodies as desired. Any local continuum description of electromagnetic (EM) response is compatible with our approach, while atomistic descriptions in our approach are based on effective electronic and nuclear oscillator degrees of freedom, encapsulating dissipation, short-range electronic correlations, and collective nuclear vibrations (phonons). While our previous works using this approach have focused on presenting novel results, this work focuses on the derivations underlying these methods. First, we show how the distinction between "atomic" and "macroscopic" bodies is ultimately somewhat arbitrary, as formulas for vdW free energies and RHT look very similar regardless of how the distinction is drawn. Next, we demonstrate that the atomistic description of material response in our approach yields EM interaction matrix elements which are expressed in terms of analytical formulas for compact bodies or semianalytical formulas based on Ewald summation for periodic media; we use this to compute vdW interaction free energies as well as RHT powers among small biological molecules in the presence of a metallic plate as well as between parallel graphene sheets in vacuum, showing strong deviations from conventional macroscopic theories due to the confluence of geometry, phonons, and EM retardation effects. Finally, we propose formulas for efficient computation of FED interactions among material bodies in which those that are treated atomistically as well as those treated through continuum methods may have arbitrary shapes, extending previous surface-integral techniques.Comment: 25 pages, 5 figures, 2 appendice

    Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Get PDF
    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic--inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Phys. Rev. Lett. 108, 236402 (2012); J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid (PTCDA), and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate--surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches

    Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

    Get PDF
    We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schr\"odinger equation is mapped onto a non-linear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross-validation over more than seven thousand small organic molecules yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves

    Long-range correlation energy calculated from coupled atomic response functions

    Get PDF
    An accurate determination of the electron correlation energy is essential for describing the structure, stability, and function in a wide variety of systems, ranging from gas-phase molecular assemblies to condensed matter and organic/inorganic interfaces. Even small errors in the correlation energy can have a large impact on the description of chemical and physical properties in the systems of interest. In this context, the development of efficient approaches for the accurate calculation of the long-range correlation energy (and hence dispersion) is the main challenge. In the last years a number of methods have been developed to augment density functional approximations via dispersion energy corrections, but most of these approaches ignore the intrinsic many-body nature of correlation effects, leading to inconsistent and sometimes even qualitatively incorrect predictions. Here we build upon the recent many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.Comment: 15 pages, 3 figure

    Interatomic Methods for the Dispersion Energy Derived from the Adiabatic Connection Fluctuation-Dissipation Theorem

    Get PDF
    Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory (DFT) calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on \textit{ad hoc} assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula. Moreover, for a system of quantum harmonic oscillators coupled through a dipole--dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD correlation energy in the random-phase approximation. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy

    Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields Under the Microscope

    Full text link
    As the sophistication of Machine Learning Force Fields (MLFF) increases to match the complexity of extended molecules and materials, so does the need for tools to properly analyze and assess the practical performance of MLFFs. To go beyond average error metrics and into a complete picture of a model's applicability and limitations, we develop FFAST (Force Field Analysis Software and Tools): a cross-platform software package designed to gain detailed insights into a model's performance and limitations, complete with an easy-to-use graphical user interface. The software allows the user to gauge the performance of many popular state-of-the-art MLFF models on various popular dataset types, providing general prediction error overviews, outlier detection mechanisms, atom-projected errors, and more. It has a 3D visualizer to find and picture problematic configurations, atoms, or clusters in a large dataset. In this paper, the example of the MACE and Nequip models are used on two datasets of interest -- stachyose and docosahexaenoic acid (DHA) -- to illustrate the use cases of the software. With it, it was found that carbons and oxygens involved in or near glycosidic bonds inside the stachyose molecule present increased prediction errors. In addition, prediction errors on DHA rise as the molecule folds, especially for the carboxylic group at the edge of the molecule. We emphasize the need for a systematic assessment of MLFF models for ensuring their successful application to study the dynamics of molecules and materials.Comment: 22 pages, 11 figure

    Role of high-order Fourier terms for stability of monolayer-surface structures: Numerical simulations

    Get PDF
    The role of high-order atom-surface Fourier terms is analyzed for the monolayer with coverage θ= 3 7 on (111) surface in cells with variable number of adsorbate atoms, allowed to relax to obtain the global minimum in each of the unit cells. A Fourier expansion with one or two shells of reciprocal cell vectors is used and three different models for the lateral interactions in the monolayer are tested, from purely repulsive to a real HFD-B2 potential. It is found that the simple commensurate (7x7) R19.1° three-atom structure is the most stable only when the contribution of the second Fourier term is included. In contrast to the conventional view, higher corrugation of the single-term Fourier model favors incommensurability. Evidence is collected that the high-order Fourier terms are mandatory for the stabilization of commensurate structures of an infinite monolayer. © 2006 The American Physical Society
    • …
    corecore